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Abstract—Acoustic Scene Classification (ASC) is a fundamental
problem in computational audition, which seeks to classify
environments based on their distinctive acoustic signatures. In
the ASC task of the APSIPA ASC 2025 Grand Challenge, the
organizers introduced a multimodal ASC task. Unlike traditional
ASC systems that rely solely on audio input, this challenge
provides additional textual information as inputs, including the
city where the audio was recorded and the time of recording. In
this paper, we present our submission system for the ASC task in
the APSIPA ASC 2025 Grand Challenge. Specifically, we propose
a multimodal network, ASCMamba, which integrates spectral,
temporal, and contextual information for fine-grained acoustic
scene understanding and effective multimodal ASC. The proposed
ASCMamba employs a DenseEncoder to extract hierarchical
spectral features from spectrograms, followed by a dual-path
Mamba blocks that capture long-range temporal and frequency
dependencies using Mamba-based state space models. In addition,
we present a two-step pseudo-labeling mechanism to generate
more reliable pseudo-labels. Results show that the proposed
systems achieve superior performance, with an improvement
ranging from 4% to 5% over the challenge baseline.

I. INTRODUCTION

Acoustic scene classification (ASC) is a crucial research
problem in computational audition that aims to recognize
the unique acoustic characteristics of an environment. Po-
tential applications of ASC techniques include environmental
monitoring and smart devices. Yet prevailing methods often
assume static scenes, neglecting spatio-temporal variability
across cities and times. Ignoring such context undermines
model generalization in real-world deployments.

Unlike the ASC task in the ICME 2024 Challenge [1],
the APSIPA ASC 2025 Grand Challenge focuses two critical
factors influencing the performance of ASC task: additional
contextual information and scarcity of labeled data. The prob-
lem of leveraging additional contextual information such as
city-level location data and precise timestamps is explored
in this challenge. Another key issue is utilizing abundant
unlabelled data to train robust ASC systems.

In this paper, we present our approach for the ASC task
in the APSIPA ASC 2025 Grand Challenge. Specifically, we
propose ASCMamba, a multimodal network for ASC tasks. To
fully exploit the temporal and spectral dependencies in audio
signals, ASCMamba applies multiple Mamba [2] blocks for
dynamic modeling in both the time and frequency domains.
Furthermore, to facilitate multimodal information interaction,
we adopt a Conditional Layer Normalization (CLN) mecha-
nism to incorporate text embeddings into ASCMamba.

The Challenge offers an extensive collection of unlabeled
data, which can be leveraged for semi-supervised learning
approaches. In this work, we first pre-train the proposed ASC-
Mamba on TAU Urban Acoustic Scenes (UAS) 2020 Mobile
development dataset [3] and CochlScene dataset [4]. These
two datasets are then combined with the labeled data from
Chinese Acoustic Scene (CAS) development dataset to fine-
tune the pre-trained ASCMamba. For unlabeled CAS samples,
we use the pre-trained ASCMamba to generate pseudo labels.

For certain unlabeled samples, the pseudo-labels generated
by the ASCMamba model have low confidence. To improve the
quality of these pseudo-labels, we develop a secondary system
dedicated to generating pseudo-labels for the above mentioned
low-confidence cases, and then use the intersection of these
pseudo-labels with those predicted by the ASCMamba model
to produce the reliable pseudo-labels. The second system
is based on the challenge baseline, i.e., SE-Trans [5]. We
improve the SE-Trans architecture by incorporating multi-scale
pooling to enhance feature representation. In addition, we
introduce an extra fully connected layer for indoor/outdoor
binary classification as a prior. We then adjust the ASC class
confidence scores based on the binary classification results
to further improve accuracy. Finally, the ASCMamba is fine-
tuned once more on the union of labeled and pseudo-labeled
data, which serves as the final ASC model for evaluation.

II. DATASETS

The TAU UAS 2020 Mobile development dataset [3] and
the CochlScene dataset [4] serve as the sources for pre-training
ASCMamba model. TAU UAS 2020 Mobile comprises 23,040
samples, each delivered in binaural format at a 48 kHz sam-
pling rate. CochlScene provides 76,115 single-channel audio
files sampled at 44.1 kHz. Because these datasets cover dif-
ferent acoustic-scene taxonomies, we removed selected scene
categories and merged others to construct a unified pre-training
set. Table I lists the resulting counts of audio recordings
per scene, where the data are used to pre-train the proposed
ASCMamba and improved SE-Trans model.

The CAS 2023 development dataset comprises 8,700 audio
clips, 20% of which are annotated. These labeled data are
merged with the new pre-training dataset to create the initial
labeled dataset. These labeled data are merged with the new
pre-training dataset to create the initial labeled dataset.
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Fig. 1. Overview of the proposed ASCMamba, which is composed of a DenseEncoder and a Dual-path Mamba Block.

TABLE I
THE NUMBER OF AUDIO RECORDINGS FOR EACH SCENE IN THE NEW

GENERATED

Pre-training dataset
Scene Number of audio recordings

Airport 2302
Bus 8125
Car 5845

Metro 8201
Metro Station 8201
Public square 2303

Restaurant 5933
Shopping Mall 2303
Traffic Street 8049
Urban Park 8048

Total 59310

III. PROPOSED APPROACH

A. ASCMamba

As shown in Figure 1, the proposed ASCMamba model is
composed of two blocks: DenseEncoder and Dual-path Mamba
Block. Details are described as follows.

1) DenseEncoder: The DenseEncoder is a two-dimensional
convolutional feature extraction module designed for time-
frequency representation learning in audio processing tasks.
It consists of three primary components: an initial channel
projection block, a dense connectivity-based feature refinement
block, and a frequency-axis down sampling block. Specially,
a DenseBlock with depth 4 is applied to encourage feature
reuse and gradient propagation across layers. Inspired by
DenseNet [6], each layer within the block receives feature
maps from all preceding layers as input, promoting the learning
of compact and discriminative spectral patterns. It mainly
serves as an efficient front-end feature extractor to effectively
capture local and hierarchical features in the audio spectrum.

2) Dual-path Mamba: The core of the block is a dual-
path Mamba architecture, which separately models dynamics
along the time and frequency dimensions. Given an input

TABLE II
THE RESHAPED SEQUENCES

Sequences Means
Xt ∈ R(B∗F )×T×C each frequency bin as a sequence over time
Xf ∈ R(B∗T )×F×C each frame as a sequence over frequency

spectrogram feature, which is the encoded representation ex-
tracted by the preceding DenseEncoder from log-mel inputs.
We denote this feature as X ∈ RB×C×T×F , which is reshaped
into two sequences, i.e., Xt and Xf , as shown in Table II.
Each sequence is processed independently by a MambaBlock,
capturing long-range dependencies along their respective axes.

To enable multimodal integration, the model accepts lo-
cation and temporal embeddings, which are projected into a
shared conditional space RDcond . This conditional vector is
used to modulate the internal feature representations through
a CLN mechanism. Specifically, CLN dynamically adjusts the
affine parameters (scale γ and β bias ) of layer normalization
based on the context, which can be formulated as:

CLN(x, c) = γ(c) · LN(x) + β(c) (1)

where γ(x) and β(x) are generated by linear projections
from the conditional vector c. This modulation is applied
before both the temporal and frequency Mamba paths, allowing
the model to adapt its feature space according to spatio-
temporal contexts, such as emphasizing different frequency
patterns depending on the time of day or geographic region.

B. Improved SE-Trans

In order to make full use of the official data set, we devel-
oped a second system dedicated to generating pseudo-labels for
the data with low confidence predicted by ASCMamba model,
and then used the intersection of these pseudo-labels with
the labels predicted by the ASCMamba model as the reliable
pseudo-labels. The second system adopts an improved SE-
Trans architecture to enhance the ability of feature expression



TABLE III
THE ACC (%) OF BASELINE AND PROPOSED SYSTEMS ON VALID-EASY AND VALID-HARD. “L&RT” MEANS “LOCATION AND RECORD TIME”.

System Airport Bar Bus Construction Site Metro Republic Square Restaurant Shopping Mall Traffic Street Urban Park Average

Valid-Easy

SE-Trans (Baseline) 0.76 0.94 0.96 0.97 0.90 0.97 0.93 0.88 1.0 0.91 0.92
ASCMamba w/ L&RT 0.97 1.0 1.0 1.0 0.90 1.0 0.93 1.0 0.97 1.0 0.97

ASCMamba w/o L&RT 0.84 0.91 0.95 0.94 0.96 0.93 0.93 0.92 0.96 1.0 0.93

Valid-Hard

ASCMamba w/ L&RT 0.82 0.93 0.96 0.94 0.97 0.95 0.93 0.93 0.96 1.0 0.94
ASCMamba w/o L&RT 0.84 1.0 0.97 0.90 0.97 1.0 0.94 1.0 1.0 1.0 0.96

and the accuracy of classification through multi-scale pooling
and two-step classification strategy.

Specifically, the improved SE-Trans uses two Squeeze-
and-Excitation (SE) modules (with two convolutional layers,
a multi-scale SE layer, and pooling), where the SE layers
apply 1×1, 2×2, and 3×3 multi-scale pooling to strengthen
feature representation. Features are then processed by a Trans-
former [7] encoder to model spatio-temporal dependencies,
followed by two fully connected layers outputting 10 specific
scene categories and 2 rough labels. The two-class fully
connected layer aims to classify an input audio clip into one
of two main classes, including in-door and out-door. The final
prediction of scene class is obtained by score fusion of these
two classifiers[8], which is expressed as follows:

c = argmaxc,i⊃cy
1
c ∗ y2i (2)

where y1c denotes the probability of class predicted by the
ten-class classifier, while y2i represents the probability of class
predicted by the binary classifier, c ∈ {1, 2, ...10} , i {1, 2}.
Since i ⊃ c, means that class i is a super set of class.
For example, the indoor scene category is the super set for
bus, metro, restaurant, shopping mall and bar. This design
significantly enhances recognition accuracy and robustness in
complex scenarios.

C. Two-step Pseudo-labeling

To exploit the unlabeled data, we introduce a two-step
pseudo-labeling scheme. In the first step, the pre-trained AS-
CMamba model is fine-tuned on the initial labeled dataset and
subsequently used to assign pseudo labels to the unlabeled
clips. The predicted posterior probabilities of unlabeled data
are sorted from high to low, and we select the top 90% of the
pseudo-labeled data.

In the second step, the ASCMamba and the improved SE-
Trans are employed to generate pseudo labels for the left
10% of the unlabeled data in the development dataset. Audio
samples predicted to belong to the same scene category by
both of these two models are selected as reliable pseudo-
labeled data. These samples are finally combined with the
initial labeled dataset to form the definitive labeled dataset
used to train our submission system.

IV. EXPERIMENTAL SETUPS

A. Evaluation Metric

Following challenge baseline, we evaluate the performance
of the ASC system using accuracy (ACC) as the primary
metric. Accuracy measures the proportion of correctly clas-
sified samples over the total number of samples, providing
a straightforward and interpretable assessment of the model’s
classification effectiveness across different scene categories.

B. Training Details

We first resample the audio recordings in the TAU UAS
2020 and CAS 2023 datasets to 44.1 kHz. All audio clips
have a fixed-length of 10 seconds. Log-Mel filter bank (LMFB)
were extracted as audio features by using Librosa [9] library
with 2048 short-time Fourier transform (STFT) points, a 40ms
Hann window, and a frame shift of 20ms. We apply 64 Mel-
filter bands on the spectrograms and generates a feature tensor
shape of 500 × 64 × 1. Dropout rate is set to 0.1. We train
our model using Adam [10] optimizer. The Batch size is set
to 4 and learning rate is set to 0.0001. All of our models are
trained using the PyTorch toolkit [11].

Because of the size of the data from the challenge dataset is
much smaller than that from the pre-training dataset. To ensure
that the model sees the challenge data more frequently during
fine-tuning, We employ a hybrid approach, which proceeds as
follows: first, pseudo-labels are predicted, and the confidence
score for each data instance is generated. Guided by the
confidence scores, the top 90% of data instances are selected
as high-quality data for the second round of fine-tuning. For
the remaining 10% of data instances, the ASCMamba and the
improved SE-Trans are employed to generate reliable pseudo
labels. Audio samples predicted to belong to the same scene
category by both of these two models are selected as reliable
pseudo-labeled data. Eventually, these two subsets, combined
with the data bearing genuine labels, are integrated to fine-
tune the target model. This strategy is designed to maximize
the utilization of officially provided training data, thereby
enhancing the model’s generalization capability.

V. RESULTS

To explores the performance of the baseline and proposed
systems, we split the validation data into two subsets: Valid-
Easy and Valid-Hard. Specifically, the samples in Valid-Easy



exhibit relatively small spatio-temporal distribution differences
from the training data. In contrast, considering that in real-
world applications the spatio-temporal distribution of data may
differ substantially from that of the training set, we assign
samples with larger distributional discrepancies to Valid-Hard.

The experimental results are presented in Table III. On
Valid-Easy, the accuracy rate of model classification has
reached 97%.

For Valid-Hard, ASCMamba without city and time performs
better, which can prove its sensitivity to spatio-temporal in-
formation. If the distribution of spatio-temporal information
between the training data and the final test data is inconsistent,
it will lead to a deterioration of the model’s performance.
Therefore, we use ASCMamba w/o L&RT as the final sub-
mitted system.

VI. CONCLUSION

In this paper, we present our approach to tackle the ASC task
of the APSIPA ASC 2025 Grand Challenge. In detail, we pro-
pose a novel architecture named ASCMamba for ASC tasks,
which uses a DenseEncoder to extract local and hierarchical
features, and applies a Dual-path Mamba block for sequence
modeling. In addition, we employ a two-step mechanism to
generate reliable pseudo-labels for unlabeled data with low
confidence. Experimental results show that when incorporate
location and record time prior, ASCMamba’s classification
accuracy rate is 97%, outperforming the challenge baseline.

REFERENCES

[1] J. Bai, M. Wang, H. Liu, et al., “Description on ieee
icme 2024 grand challenge: Semi-supervised acoustic
scene classification under domain shift,” arXiv preprint
arXiv:2402.02694, 2024.

[2] A. Gu and T. Dao, “Mamba: Linear-time sequence
modeling with selective state spaces,” arXiv preprint
arXiv:2312.00752, 2023.

[3] H. Toni, M. Annamaria, and V. Tuomas, “Tau urban
acoustic scenes 2020 mobile development dataset [data
set],” Zenodo, 2020.

[4] I.-Y. Jeong and J. Park, “Cochlscene: Acquisition of
acoustic scene data using crowdsourcing,” in 2022 Asia-
Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), IEEE,
2022, pp. 17–21.

[5] J. Bai, J. Chen, M. Wang, M. S. Ayub, and Q. Yan,
“A squeeze-and-excitation and transformer-based cross-
task model for environmental sound recognition,” IEEE
Transactions on Cognitive and Developmental Systems,
vol. 15, no. 3, pp. 1501–1513, 2023.

[6] D. Kim, B. Heo, and D. Han, “Densenets reloaded:
Paradigm shift beyond resnets and vits,” in Euro-
pean Conference on Computer Vision, Springer, 2024,
pp. 395–415.

[7] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” Advances in neural information process-
ing systems, vol. 30, 2017.

[8] H. Hu, C.-H. H. Yang, X. Xia, et al., “A two-stage
approach to device-robust acoustic scene classification,”
in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2021, pp. 845–849.

[9] B. McFee, C. Raffel, D. Liang, et al., “Librosa: Audio
and music signal analysis in python.,” SciPy, vol. 2015,
pp. 18–24, 2015.

[10] K. D. B. J. Adam et al., “A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, vol. 1412,
no. 6, 2014.

[11] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An im-
perative style, high-performance deep learning library,”
Advances in neural information processing systems,
vol. 32, 2019.


